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5 Digital Filters in ERP Research

J. Christopher Edgar, Jennifer L. Stewart, and Gregory A. Miller

The processing of psychophysiological signals always includes some type of filtering.
Although there are many different filtering techniques, all involve removing a por-
tion of the recorded signal—either activity that is considered noise (e.g., 60-Hz activ-
ity), or some signal components to focus on others. Filtering is often conceptualized
as removing particular sine wave frequencies from data that are treated as consisting
solely of multiple sine waves, although the concept of filtering is entirely general, and
real world signals rarely consist of invariant sine waves.

Filtering is routinely done by means of electronic circuits built into recording ampli-
fiers or electrically interposed between the amplifier and the recording device, such
as an analog-to-digital (A/D) converter. Such electronic (or analog) filters applied to a
continuous (usually varying) voltage contrast with digital filters that are applied to a
discrete, numeric representation of the numerically recorded signal. (For an introduc-
tion aimed at psychophysiologists, see Cook & Miller, 1992; for an extensive overview
of digital filtering methods for the advanced psychophysiologist reader, see Ruchkin,
1988.) Digital filtering has several clear advantages over analog filtering (see Picton
et al., 2000). First, the original data can be retained for evaluation using alternative fil-
ter settings. Second, one can construct digital filters so that they do not alter the phase
(see box 5.1) of frequencies in the waveform. Third, digital filtering can more easily
adapt its settings than filtering that depends on hardware components. It is generally
appropriate to restrict analog filtering to what is required to prevent aliasing (due to
signal frequencies too high to be represented accurately at a given sampling rate; see
box 5.2) or blocking of the A/D converter (due to signal amplitude exceeding its input
range) and to use digital filtering for subsequent signal analysis.

Reliance on digital filters is increasing, thanks to the pervasiveness of powerful
desktop computers, along with growing interest in psychophysiological research, lead-
ing individuals, labs, and companies to create publicly available software (e.g., Well-
come Department of Cognitive Neurology [SPM], Richard Coppola [EEGSYS], Oxford
Image Analysis Group [FSL], Medical Numerics [MEDx], NeuroScan [SCAN and CURRY],
James Long Company [EEG Analysis System], Michael Scherg [BESA], Edwin Cook
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[FWTGEN], Electrical Geodesics [Analysis Tools|, Scott Makeig [EI?GLAB], Cor're:fh
Labs [FreeSurfer], Neuromag [Neuromag], Brain Innovation B.V. [BrainVoyager|, Brain
Products Vision Analyzer) that allow investigators to manipulate an.d analyze ps;ictllo-
physiological signals, relieving the investigator of the need to write cu:v,tom digital
filtering programs. However, one should use the available software only with a full ap-
preciation for the algorithms and options it provides. ‘

As others have explained characteristics of analog filters and dlffert‘ances betvx'reen
analog and digital filters (e.g., Coles et al., 1986; Cook & Miller, 1992; Nlt‘SC‘th. M]l.ler,
& Cook, 1998; Picton et al., 2000), the present discussion focuses on.chglt'al filtering
techniques, emphasizing practical information of use to pSYCthh)’!‘:lOiOg‘lStS, rat?uer
than formal mathematical treatments available in engineering and sllgnal processing
texts. This overview concludes with a discussion of filtering features in some popula!r
software aimed at the ERP research community, with a particular focus on t_he vari-
ability across and within programs. We present a method to determine the gain func-
tion of a given filter, so that users of publicly available software can evaluate the
behavior of the filters used.

Analog and Digital Filtering: Concepts and Terms

The most commonly considered electronic filters used in psychophysiology are high-
pass and low-pass, which selectively attenuate low-frequency and high-frequency
components, respectively. (More ambiguously, the term ‘“high cutoff"{can refer t(j
the high-pass setting or the low-pass setting, and similarly for the term ‘1(‘)w choﬁ.

“High-pass” and “low-pass’ are unambiguous and preferable.) Deployed in senes.. a
combination of a high-pass and a low-pass filter constitutes a bandpass filter, w.hlch
passes frequencies within a single range. Another hybrid, the bandstop filter, selectively
attenuates frequency components within a specified range. Typically, band-stop fll.te.rs,
often referred to as notch filters, attenuate a narrow range of frequencies in the vicinity
of power line noise (50 or 60 Hz). The range of frequencies that a filter will pass w.ith-
out substantial attenuation is its pass band. The range of frequencies in which little
energy is passed is the stop band, and the range of frequencies in which gain is inter-
mediate is the transition band. In an ideal filter, there might be no transition band, or
the boundary between the transition band and the pass or stop band would be discrete.
In realistic filters, such boundaries cannot be so sharp; descriptions of such boundaries
must be understood as approximate. In principle, one could construct a filter with
any combination of pass and stop bands. One can also subject the same set of data
to several filters in parallel, producing alternative sets of filtered output (e.g., for
different EEG bands). Whether analog or digital, more complex filters can achieve
narrower transition bands, which may be required in situations where the signal of
interest and the noise or artifact to be rejected contain similar frequency components.
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Box 5.1
Phase
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In the context of ongoing sine waves, Phase (or phase angle) refers to where in the cycle a
given sinusoidal waveform is at a particular time. A sine wave starts at time to and con-
tinues indefinitely, changing moment to moment; but at any given moment one can ask
what the phase is of that sine wave. That is, at what point in its cycle is it? Specifying its
amplitude, frequency, and phase at t, allows projection of its value at any future moment.
If the wave starts at O v at time f,, ranges from +10 to —10 v, and oscillates at 10 Hz (com-
pleting a cycle every 100 ms), it will return to 0 v every 50 ms, It will reach +10 v at 25 ms
and again at 125 ms. At every multiple of 100 ms, it will be back at 0 v, headed positive.
After 1000 ms, it will have completed 10 cycles and be back at 0 v.

——0 degrees = 0 radians = 360 degrees = 2 pi radians
~ —90 degrees = pi/2 radians (= cosine at 0 degrees)
- - - 180 degrees = pi radians

There are two common conventions for quantifying the phase of a sine wave: degrees
and radians. One complete cycle of a sine wave can be characterized as taking 360 degrees
or as taking 2 « pi radians, because of the relationship of the sine function to proportions of
a circle. At the beginning of a cycle, the sine wave is at 0 degrees or at 0 radians. Halfway
through a cycle, a sine wave is at 180 degrees or at pi radians. After one full cvcle, it is at 360
degrees or at 2+ pi radians, which is the same as 0 degrees or 0 radians. In the figure, the
solid line is a sine wave that starts at 0 degrees and completes three cycles. The dashed line
shows the same sine wave, except that the sine wave starts at its maximum positive voltage
rather than at 0 v. Thus, only its phase differs from the solid line. Because 10 v is one-
quarter of the full cycle of the solid line, the dashed line is said to be at a phase of 90
degrees or pi/2 radians. One can also say that the solid and dashed lines differ by 90 degrees
or pi/2 radians. Finally, the dotted line is perfectly “out of phase” with the solid line,
meaning that it is a mirror image, although otherwise identical. Formally, the dotted line
begins at a phase (phase angle) of 180 degrees or pi radians.
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Box 5.2
Box 5.2 (continued)

The Nyquist Rule and Aliasing

In order for a time series to represent a continuous wavefo‘rm fadequately, the samplh;z_g;nr::i
(f; in samples per second, the inverse of the sampling pen(.)d. in seconds per samp! :mmv
be more than twice the fastest frequency present in the original wa.veff)rm‘ ﬂ\fiored des_é
one must sample more than twice the bandwidth, but in most applications this u:h tman
Hz.) Similarly, if the sampling is of the scalp surface (via ERP electrode densit}](); ral : :n =
time, the spatial frequency of sampling must be more than twice the sPatie; ; ;;q[m ;yme
topographic change on the head surface (see Srinivasan, 'I“uclfer, & Muna-s. NRI, i
discussion of this issue). The same spatial sampling density issue aljlses in gy e;
This requirement follows from the fact that only if samples are obtained at- leas | : T};l :
cvcle can a discrete time series accurately represent the frequency of. a sine :rav = o
a;ciom is referred to as Nyguist's rule; one-half the sampl‘ir.lg frequency is referre :0. ::slow-
Nyquist frequency. If the rule is violated, the resulting digitized waveform may f;:)r;m a:) =
frequency components not present in the original data. This phenomenc:lnd A
aliasing, because a signal component appears at a frequency in the sampled da

from its frequency in the original signal.

AN
A
MBS
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The figure illustrates the effect of aliasing. The x axis is 1000 ms., and thel.' five signals ir(e)
digitized at 100 Hz, thus providing a Nyquist frequency of 50 Hz. The five signals begig azo
degrees phase and have identical amplitudes but differ in frequency, tnp.ta bottom: 10, &0,
40, 60, and 97 Hz. For the 10-Hz signal, the 100-Hz A/D rate does a good job of representing
the original continuous waveform, seeming to lose just a bit at the peaks of the _cycles. The
20-Hz signal is very recognizable, though the tracing is a bit choppy. Inspection verifies
that 20 cycles are completed. To the eye, the 40-Hz signal looks ver]..’ choppy and .perha[‘Jlsl;
composed of several frequencies. But because it is below the Nyquist frequency it is sti

accurately represented: there are 40 downward peaks. This illustrates that sampling at more
than twice the frequency in the signal does not ensure an attractive representation, Impor-
tantly, the 60-Hz signal is misrepresented. It appears to be identical to the 40-Hz signal
except for a 180-degree phase reversal. Frequency analysis would unambiguously (though
incorrectly) show that it is composed of a single, pure 40-Hz component. The 60-Hz signal
has been aliased down to 40 Hz, because 60 and 40 are equidistant from the Nyquist fre-
quency of 50 Hz. Finally, the bottom tracing shows an extreme and intriguing example of
aliasing. Even though the 97-Hz signal is below the 100-Hz sampling rate, the signal is very
badly distorted. The signal appears to be a perfect 3-Hz signal, because 97 and three are
equidistant from the Nyquist frequency. This example is particularly impressive because the
time series looks deceptively clean.

We can offer several caveats regarding aliasing. First, Nyquist's rule requires sampling at
twice the fastest frequency present in the original waveform—not merely twice the fastest
frequency in which the investigator is interested. Second, treatment of the aliasing problem
generally assumes that real-world phenomena are well represented by sinusoidal compo-
nents. To the extent the raw data are not perfectly sinusoidal (and physiological data gen-
erally are not), a higher sampling frequency is necessary. Third, strict conformance to the
Nyvquist rule is not necessarily sufficient to provide a digitized signal that will illustrate the
raw data well. Even a pure sine wave sampled at fewer than five samples per cycle may look
very choppy, and signals composed of multiple components may require a much higher
sample rate in order to provide good visual fidelity, The Nyquist rule only addresses the
aliasing issue about whether frequencies will be systematically misrepresented. A raw signal
composed of sine waves and sampled at more than twice the frequency of the highest
component will not be aliased and can be treated numerically with confidence, but the
vector of samples may not be very presentable graphically. Fourth, sampling density is not
an issue when a single observation is of interest. For example, if the research question is
focused on activity at the Cz recording site rather than on topography or source localiza-
tion, the spatial density of other electrode placements is not an issue. Similarly, if one cares
only about activity 400 ms after stimulus onset, one need only digitize a single value at that
latency, without concern about aliasing.

Some analog filters are occasionally called anti-aliasing filters, This term can be confusing,
as it actually refers to the use to which the filter is put rather than to any property of the
filter. One can avoid aliasing by employing a low-pass analog filter prior to digitizing a sig-
nal. One would need an additional, anti-aliasing filter only if the amplifier does not provide
a suitable setting relative to the frequency characteristics of the signal and the sample rate,
in terms of either f; or roll-off. Typically, anti-aliasing filters have very steep roll-offs, per-
haps 45 dB/octave,

Because of possible errors in estimating the highest frequencies in real-world data, noise
introduced by amplifiers and A/D converters, and the nonsinusoidal nature of many phys-
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Box 5.2
(continued)

jological signals, many have suggested (e.g., Attinger, Anne, & McDonald, 1966; Coles et al.,
1986) that the sample rate be as much as 5-10 times higher than the Nyquist rule suggests.
On the other hand, when the noise power introduced at high frequencies is minimal, less
intensive sampling may suffice and the resulting (trivially small) aliased noise ignored. A
second situation in which it is sometimes possible to violate the Nyquist rule is where all
high-frequency noise sources are a harmonic of a single frequency. With the right sampling
period, the sampling will occur at the same phase of the noise cycle with every sample (e.g.,
power-line noise at 50 or 60 Hz). However, the obtained samples may include a DC offset
that can vary by as much as the full peak-to-peak range of the noise, which may or may not
be problematic in a given context. For example, in a long-interval CNV study, Simons,
Ohman, and Lang (1979) sampled the EEG at 30 Hz, which is largely impervious to 60-Hz
noise. Because they deviated epochs of interest from a prestimulus baseline, their data were
not vulnerable to the DC offset problem. Aliasing is important in selecting parameters for
digital data acquisition and filtering. A more rigorous treatment of aliasing, based on power
spectrum analysis, appears in appendix A of Cook and Miller 1992.

For simplicity, we will largely restrict the present discussion to simple high-pass and
low-pass filters, although we will note other types. Also, the present discussion will
focus on filters characterized in terms of their response to sine wave input. That is how
psychophysiology, including the literature on event-related brain potentials (ERPs),
usually characterizes filter performance, although other approaches are possible.

In common use, the term gain indicates an increase in magnitude, but more gen-
erally it refers to any ratio of output to input. Gain may be greater than, equal to, or
less than 1.0. In discussions of electrical circuits, one generally considers segments
of the circuit designed to boost signal magnitude (gain > 1.0), regardless of frequency
(amplifiers), separately from segments designed to reduce magnitude (gain < 1.0)
selectively as a function of frequency (filters). Thus, filters normally have a frequency-
dependent gain ranging from 0.0 to 1.0. (In some cases gain may even be negative,
meaning that the polarity of the signal is inverted.) The relationship between fre-
quency and gain is typically plotted as the gain function for a particular filter, with fre-
quency on the x axis and signal magnitude on the y axis represented in amplitude
(voltage) or power (roughly the square of voltage; box 5.3 discusses their relationship).
Figure 5.1 illustrates the gain function for a low-pass filter. The upper left shows the
ripple that some types of filters introduce in the pass-band and/or stop-band. When
the gain goes below zero (or is negative), the effect is an inversion of the signal.

Filters are sometimes characterized in terms of the approximate boundaries of the
transition band. Alternatively, a specific frequency within the transition band may be
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Box 5.3
Power, Amplitude, and Cutoff Frequency

For expository purposes, one can often use power and amplitude interchangeably to con-
vey the magnitude of a signal or a component of a signal. However, quantitatively, power
and amplitude are not the same concepts. As a first approximation, power is the square of
amplitude, so that power is never negative. More precisely, voltage = current = resistance
(Ohm's law), and power (in watts) = voltage = current. As a result of these relationships,
power = voltage + voltage/resistance. Thus, power is proportional to the square of voltage.
Commonly in treatments of these relationships, resistance is implicitly set to 1.0, so that
power is the square of voltage.

This distinction is important in describing the characteristics of digital filters. Filters are
often described in terms of the frequency at which the output of the filter is half that input.
Sometimes authors put this explicitly in terms of half amplitude or half power, but often
neither is specified. The frequency at which the output amplitude is half the input ampli-
tude is not, in general, the frequency at which the output power is half the input power,
This follows readily from the observation that .707% = .5. With power the square of ampli-
tude, the frequency at which power is reduced by 50 percent is the frequency at which
amplitude is reduced by 29.3 percent. Conversely, given .52 = .25, the frequency at which
amplitude is reduced by 50 percent is the frequency at which power is reduced by 75 per-
cent. Depending on the gain function of a filter, the half-amplitude and half-power fre-
quencies may be quite different. It is important that authors {and publicly available
software) make clear whether their frequency cutoffs are specified in terms of power or am-
plitude. In the present chapter, f; always refers to cutoff frequency in the strict sense of the
half-power frequency, following its usual definition in the electrical engineering literature.
We use cutoff frequency more generically, referring to either half power or half amplitude,
These are its common uses, but in some contexts cutoff frequency refers to some other
threshold on the gain function (see Cook & Miller, 1992, for some examples).

cited as the “cutoff” or “corner” frequency, f;. The definition of f; varies across authors
and even across amplifier manufacturers. In the electrical engineering literature, f
is defined fairly consistently as the half-power frequency—that frequency within the
transition band where the gain (ratio of output power to input power) is .5. Some
standard sources in the psychophysiology literature also define f. as the half-power
frequency. However, other sources treat f; as the half-amplitude frequency, which is
not the half-power frequency. In addition, two other ways of reporting filter cutoffs in-
volve the time constant and decibels (see box 5.4 and box 5.5).

Another feature of transition bands sometimes reported is the “roll-off,"” usually
expressed in dB per unit change in frequency, usually octave (a doubling or halving of
frequency) and sometimes decade (a tenfold change in frequency). Thus, a 6-dB/octave
filter has a much narrower transition band (steeper roll-off) than a 6-dB/decade filter,
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Figure 5.1 2 ‘
TI'?e gain function of a filter is divided into the pass band, transition band, and stop band. The gain

function shown is for a low-pass filter, without magnitude as a percentage of input magnitude.

though one could describe both (ambiguously) as having. a “6-fiB roll-(;ff.” g\:s;ieﬂf]z:
analog and digital filters can be designed with gain.funlctlfms dl‘fferent rom e
a simple RC filter, including cascading several RC circuits in series. As a c%rllseq:: ﬁlte;
the slope or roll-off within the transition band carll be more or less steep. Thus,
i rized as having a 24-dB/octave slope.
m]l!.gil:;r::u(r::: r;‘f;fe remote fromgthe electrical engineering tra.di_tion may us.e an alto;
gether different means of characterizing filters. For example, it is t:ommon in rfur;el'fl
functional magnetic resonance literature to apply (spatial) anoothm‘g characterized in
terms of its FWHM, or full-width/half-maximum value. Ty'plcally,_thls ref_ers l:(:‘.a (nor;
mally) symmetrical weighting function, and the acronym FWHM is the width (in m
i its maximum value.
Of;;?sﬁir:;:;n;ft :J{:'ftji:)ds of characterizing filters reﬂect‘s the valriety of disciplines
from which psychophysiology draws, but inconsistencies -lI‘l reporting such chf‘irac:;r-
istics can be problematic. Ideally, authors would routinely include a figure showmg . e
gain function of their filters. Minimally, authors should report filter ch'aractens 1;5
unambiguously. For example, one should not report a cutoff frequency without T-& -
ing clear whether this refers to half power, half amplitude, the start of the transition
or some other reference point.
ba;l':;s ;i:;ussion of analog an[tjcl digital filters is equally applicable to sign_als samp_led
over time and signals sampled over space. From the standpoint of a numeric operation
on a vector of values, it is irrelevant whether the values represent a phenomenon
unfolding over time or over space. For practical reasons, analog ﬁlters.are gener.ally
confined to time-domain applications, but digital filters are equally applicable to time

and space contexts.
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Box 5.4
RC Circuits, Time Constants, and Phase Delay

The time constant is a property of certain types of simple analog electrical circuits, For
present purposes, a resistor (R) and a capacitor (C) in series will suffice. A constant voltage
applied across this circuit (such as from a battery) will, in effect, cause charge to flow
through the resistor and accumulate on the capacitor. As the charge accumulates, the ca-
pacitor begins to resist the flow of additional charge. Thus, over time, voltage builds up
across the capacitor, while current through the resistor declines, The circuit reaches a steady
state when the voltage across the Capacitor matches the voltage applied to the circuit, at
which time current is zero, The voltage build-up and current decline are mirror images,
€ach asymptotic functions of time. The eventual voltage across the capacitor depends en-
tirely on the voltage applied to the circuit, not on the R or C values. However, the time
taken to reach asymptote does not depend at all on the applied voltage. It depends solely
on the R and C values. Thus, the circuit behaves consistently over time regardless of the
amplitude of the voltage input. For a given RC combination, the time constant (TC) is
defined at the time in seconds to reach approximately 63 percent of the asymptotic state,
and it happens that TC = R+ C, The cutoff frequency £ can be defined in terms of Rand C:
R+C=TC = 1/(2zf.).

This account extends readily to the case of varying voltage input that is typical of psy-
chophysiological signals. Inversion of the polarity of the voltage source will cause current
to reverse direction and charge to empty from the capacitor. The rate at which that happens
is again governed by the time constant of that RC combination. Some amplifier settings are
labeled in time constant units (seconds) rather than frequency units (cycles per second).
Reference in the literature to the time constant of a circuit has sometimes meant the high-
pass f.. Thus, a filter might be characterized by a time constant and a low-pass f.. However,
formally this is am biguous, as any given RC circuit can serve as either a high-pass or low-
pass filter, depending on whether the voltage across the resistor or the capacitor is taken as
the output of the filter. In fact, a single RC circuit can serve both functions simultaneously,
such as in the crossover circuit in a multispeaker audio system, separating treble and bass
frequencies for different speakers.

The role of the capacitor in RC filters accounts for the phase distortion that such filters
Create. It takes time for charge on the capacitor to accrue and empty, more time for lower
input frequencies. Thus, the output of the circuit is a delayed representation of the input
(already a distortion), and that delay varies with frequency (a further distortion). To further
appreciate the phase delay inherent in a real or simulated analog filter, consider a simple
RC circuit employed as a high-pass filter typically found in an amplifier. Essentially, lower
frequency components of the signal are removed as their charge builds up slowly and
dissipates slowly on the capacitor. Each moment's input voltage is blurred with recent
moments’ voltages. The filter thus has some memory. A sudden (high-frequency) change to
a new input level is reflected immediately in the output until the new level has been sus-

tained long enough to build up charge across the capacitor. There will be no noticeable
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Box 5.4
(continued)

puild-up if the frequency of the new input has a sufficiently high frequency. But if the new
input level is sustained (low frequency or even 0 Hz—a ftrue level change), the capacitor
charge will gradually build up. Thus, the output level will reflect the input level only after
some delay—a phase distortion, the degree of which depends on the frequency of the
input. This is the basis of the familiar rising and falling curve associated with an RC circuit’s
time constant.

The amount of this phase distortion is a function of frequency. An RC filter will distort
not only the latency but also the shape of the input waveform. Phase shift is of partic-
ular concern in psychophysiological research when the timing of an event (e.g., a peak of
an ERP component) is the focus of investigation. Analog low-pass filters will generally in-
crease the apparent latencies of such events, with the amount of this increase depending on
the frequency components of the event and specific characteristics of the filter design—the
lower the cutoff frequency (equivalently, the longer the time constant), the greater the dis-
tortion. This phase shift may be a desirable feature when the researcher seeks to replicate
and extend previous research conducted with analog filters (e.g., Cook et al., 1991). Some
software provides a backward filter (see Zero Phase Shift and simulated Analog Settings
section, p. 106) that allows one to compensate for the phase shift caused by the analog filters.

=

Issues in Understanding Digital Filters

Having reviewed some general principles and issues in filtering, we now address digi-
tal filtering more specifically. We can use the term “digital filter” for a wide range of
techniques that may only have in common the fact that they are mathematical pro-
cedures that are applied to discrete numeric representations of discrete or continuous
waveforms in order to selectively augment or more commonly to attenuate certain
frequencies. Psychophysiologists using a wide range of physiological measures rou-
tinely work with such representations. Any parameter that can be recorded repeatedly
over time or space can be treated as a vector of observations of the form:

Xe, Xewas Xeyoas Xeaads - -1 Xttnd

If these values are recorded over time, the data are sometimes called a time series.
The subscripts refer to the time at which the variable X is observed, with t the time at
which recording began and d the sampling period (the time or distance between adja-
cent samples, a constant in most applications, and assumed constant in the present
discussion). Event series (where time between events, in ms, differs from event to
event) such as heart periods can be converted to time series with a constant sampling
period (Cheung & Porges, 1977; Graham, 1978; Miller, 1986).
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Box 5.5
Decibels

Characterization of the cutoff frequency of a filter in terms of decibels (dB) involw
log function of the gain, with different but equivalent equations for power and amesna
tude an.d with negative values meaning a gain less than 1.0. In dB, a gain of (Pyy/Piy) :P 5-
power is 10 logy(Pout/Pin) = 10 log,4(.5) = —3 dB. A gain of (Vy,/Viy) =.5 amplii:ude ‘is
20 logy(Vour/Vin) = 20 log,,(.5) = —6 dB. As noted in box 3, voltage = current # resistan
(Ohm’s law), and power (in watts) = voltage = current. Therefore, power = vol 3
voltage/resistance. Thus, power is proportional to the square of vol;age. Cor;montag';
treatments of these relationships, resistance is implicitly set to 1.0, and power is said Z be
the square of voltage. The half-power frequency f; is often referred to as the frequen
which the gain is “3 dB down."” At the half-amplitude frequency, output is 6 dB z:low\urrgr :;t
must be appreciated that the half-power frequency and the half-amplitude frequen b
not the same frequency, because power and amplitude are different values. Thatqis tlz ;m
quency at which the filter will reduce the power by half is not the frequency at whi;:h it wltl‘;
reduce the amplitude by half. This is a common source of confusion in the ERP literature
Generally, the half-amplitude frequency will be further from the center of the passband-
than is the half-power frequency. A characterization of a filter in terms of the frequency at

which output is cut in half is ambiguous unless i
ess it is made clear whether this i
power or half of the amplitude. g

Representing Waveforms in the Frequency Domain
fi time series that indicates voltage or some other parameter as a function of time
is considered a representation “in the time domain.” An alternative representation of
the same information is based on the principle that any stationary waveform (i.e
from which long-term trends or changes in level have been removed and in whi'cl'l,
the frequency components do not change in amplitude or phase over time) may be
represented as the sum of a set of sinusoidal waveforms, each of a different fre-
quency and having an associated amplitude (or power) and phase. This principle (the
Fourier theorem) is the basis of Fourier analysis, which determines the amplitudes and
p'hases of the constituent sinusoids as a function of frequency. This representation of a
signal is “in the frequency domain.” A direct Fourier transform converts a digitally rep-
resented signal from the time domain to the frequency domain; an inverse Fourier
transform does the converse (see box 5.6). No information is lost in either transform—
each is simply a way to represent the original vector of data. Figure 5.2 provides two
e.xamples of how a set of sine waves can combine to form an apparently nonsinusoidal
time series.

Tjhe interchangeability of time-domain and frequency-domain representations of
a given waveform bears emphasis. Consider a set of j sine waves. Given the station-
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arity assumption, the frequency, amplitude, and phase of each sine wave are cc.)nstant
throughout the analyzed epoch. At any particular time during the epoch, the dlﬁen:?nt
sine waves may be at different points in their cycles. Summing across the set of S}ne
waves produces a single composite waveform in which the constituents fnay be ‘dlﬁ:l-
cult to identify. One could digitize the composite waveform, describing it as a smgl.e
vector of values arranged in time. Alternatively, one could describe it with amp?l-
tude and phase vectors (known as the amplitude and phase spectra) arranged in
order by frequency. Either description—in the time domain or in tt.le. frequency
domain—completely specifies all of the information contained in the digitized com-
posite waveform. One description may be more tractable for a given set of analys:.es or
more intuitively appealing for a given question, but the same information is available
in the two representations. Although more familiar in analyses of ongoing EEG, one
can use Fourier analysis in conventional ERP paradigms (e.g., Pfurtscheller & Lopes
da Silva, 1999). The inverse Fourier transform is also used in the conversion of raw

Box 5.6
The Fourier Theorem, Stationarity, and Epoch Length
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Box 5.6
(continued)

The Fourier approach to analyzing a finite time series of length T (in seconds) is bu‘ilt
around a sine wave of frequency 1/T (in cycles per second) and its harmonics. Fourier
modeling of the time series will work properly only when the slowest frequency in the d:fta,
other than overall level (0 Hz), is exactly 1/T. In other words, Fourier assumes that there is a
frequency contributing to the activity in epoch T that has a cycle length exactly equal to T.
Furthermore, all other (faster) frequencies in the data are assumed to be limited to the har-
monics 2/T, 3/T, etc. In the output of the forward Fourier transform (FFT), each such fre-
quency is sometimes called a frequency bin. The longer the epoch T is, the finer the
frequency resolution of the Fourier transform.

Some confusion can come from the terminology of the Fourier transform. In reality, the
data are not “transformed.” The original data remain, but new vectors are created that
describe a set of sine waves. There is a power or amplitude vector, with one value for
each harmonic, and a phase vector, again with one value for each harmonic. Just as multi-
ple regression as a computational procedure determines the best-fitting line by computing
weights for the available predictors, the FFT as a computational procedure figures out a set
of sine wave characteristics that describe a vector of data,

It may seem counterintuitive that increasing the sample rate does not improve the
frequency resolution. What increasing the sample rate does is extend the number of har-
monics, or bins, in the spectrum that the Fourier Transform computes (see box 5.2 on the
Nyquist rule and aliasing). Thus, to represent a broader range of frequencies, one should
increase the sampling rate. To improve the frequency resolution, one should increase the
epoch length.

The Fourier transform can be applied in reverse, creating a time series from a set of sine
waves. Thus, the transformation goes in both directions, with no loss of information in
either direction.

The impact of the assumption that a time series can be modeled as the sum of a specific
set of sine waves is often underappreciated. Brigham (1974, chapter 6) and Glaser and
Ruchkin (1976, chapter 3) provide graphical illustrations of the misallocation of frequency
information, called leakage, that occurs when nonharmonic frequencies are present. Fourier
analysis is best when the Fourier transform is applied to a time series of infinite length, be-
cause this leakage into inappropriate frequency bins will not occur, This point can readily
be understood as follows: as T approaches infinity, 1/T" approaches 0.0. As a result, the
width of each bin approaches zero, and the frequency resolution becomes extremely high,
so that virtually any activity is close to a harmonic. Very long analysis epochs are thus
much less vulnerable to leakage of nonharmonic activity.

On the other hand, long analysis epochs are vulnerable to violation of the stationarity
assumption of no changes in the constituent frequencies over time, The Fourier transform
from the time to the frequency domain produces a set of amplitude and phase values, one
amplitude and one phase value for each harmonic. Because the entire time series will be
described by a (static) set of frequencies of specified amplitude and phase, this approach
cannot deal correctly with any change in the amplitude or phase of a given frequency dur-
ing the T epoch. In that sense, the data must be stationary during the epoch analyzed.

One way to deal with the stationarity assumption is to divide a long time series into
shorter epochs, on the assumption that data will be more stable over shorter periods. Thus,
for example, a 60-s time series might be analyzed as 60 1-s epochs, rather than as a single
60-s epoch.

Real-world psychophysiological data routinely violate the Fourier method’s requirement
of stationarity, meaning that the time series to be analyzed is composed of invariant sine
waves. Rather than viewing stationarity as a requirement of Fourier analysis, it is better to
think of it as an assumption. In other words, Fourier analysis characterizes any arbitrary
time series as a set of sine waves. If in fact that time series is anything other than a set of
sine waves, the characterization will be off the mark. How far off the mark and how prob-
lematic that is are judgment calls the investigator must make.

As noted elsewhere in this chapter, whether the original data vector contains values
arrayed in time or values arrayed in space, virtually all comments here apply to both. Thus,
for example, one can model a one-dimensional spatial (rather than temporal) vector as the
sum of a series of sine waves, where the frequencies are in terms of cycles per unit distance
(rather than per unit time). This is common in magnetic resonance imaging, for example. It
can also be done with a set of electrodes—maost simply, those arrayed in a single plane,
equally spaced. Issues of epoch length and stationarity apply equally to distance and to
time,
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Figure 5.2

T‘ga illustrations of the summation of pure sine waves to approximate apparently nonsinusoidal
times series. In the left panel, 10 sine waves (all odd harmonics) sum to an approximation of a
square wave. In the right panel, five sine waves (all even harmonics) sum to an approximation of a
sawtooth wave. In either case, adding additional sine waves of the appropriate frequency, ampli-
tude, and phase would improve the approximation.

magnetic resonance imaging data to images. Appendix A of Cook and Miller (1992)
details the computational steps for the direct and inverse Fourier transforms; that is,
for shuttling between time and frequency domain representations.

Note that the fidelity of a Fourier analysis is limited by the extent to which modeling
the data as a sum of invariant sinusoids is appropriate to the raw data. Because Fourier-
transformed data in the frequency domain contain exactly the information in the
original time-domain waveform, the Fourier transform, in either direction, does not
introduce distortion into the data. However, characterization of the data via a set of
sine waves does not ensure that the original physiological phenomena were indeed
sinusoidal or that scoring in terms of sine waves are high-fidelity representations of
those phenomena.

Implementing Digital Filters

We noted earlier that a wide range of mathematical procedures applied to time series
may be considered digital filters (for an extended and intuitively appealing presenta-
tion of this perspective, see Donchin & Heffley, 1978). If one simply requires that the
procedure selectively attenuate certain frequencies, then digital filters are pervasive
in psychophysiology. For example, the calculation of the mean of a time series may be
construed as a digital filter that attenuates all frequencies except 0 Hz (DC). Computa-
tion of the variance of the time series is the complementary operation, removing the
DC component while retaining (and combining) all other frequencies. The present
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discussion focuses on procedures that yield a time series (one from which certain fre-
quencies have been removed) rather than a single value such as the mean.

In a common type of digital filter, each filtered output point is defined as a weighted
or unweighted average of some number of input data points. Let vector W consist of
2j+ 1 weights (subscripted —j to +j) that will be used to compute output vector ¥ from
input vector X. Typically, X and Y are the same length (Y may be a bit shorter, as some
filters are not applicable near the ends of the time series), and W is much shorter. The
sample period (distance in time or space between the points in X), the number of
weights, and the values of those weights affect the gain function of the filter. 2j+1
input data points (a portion of vector X) will be included in the computation of each
filtered output point (to be stored in vector Y). Each value in Y is computed by con-
volving the 2j + 1 weights in W with 2j + 1 values in X. Convolution is the sum of the
cross-products of the weights and corresponding X values:

i
Vi = Z Wi x Xpai (5.1)
=<

The number and magnitude of the weights in W clearly affect the gain function of
such a filter. Note that the convolution of two vectors is similar to the correlation be-
tween them, but in correlation the means are removed from each vector, and each is
divided by its standard deviation—that is, correlation normalizes the two vectors.

Another factor that affects the gain function is the temporal relationship between
the points in X convolved with W and the point in Y in which the summed cross-
product is stored. In equation 5.1, the 2j + 1 weights are applied symmetrically around
the point in X being filtered. Typically in such a case, the set of weights is symmetric
about the unpaired center weight W, (i.e, W;=W_)). An alternative approach
employs just points in X up to and including the point corresponding to the ¥ value
that the filter will output, with j weights:

[
Yi=) WixXe (5.2)
i=0
This aligns W with j points in X, the last of which is the time point corresponding
to the value being computed for Y. When the values in X are digitized in time, this
approach has the advantage of not needing points collected later than a given Y value
in order to filter X into Y. This allows application of filtering in real time. A disadvan-
tage is that this tactic introduces a phase shift into Y: Y, reflects concurrent and previ-
ous but not subsequent values in X. In effect, a portion of the variance in X is shifted
later in Y. The approach in equation 5.1 does not introduce this phase shift, as long as
the weights are symmetrical about the unpaired center weight.
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Equations 5.1 and 5.2 only employ values in X in computing values in Y. Yet an-
other factor that affects filter performance is the option to employ previously filtered
points in computing the filtered value for Y. This uses portions of the Y vector to
compute a given value in Y. The general form of such a filter with j weights is:

j
Ye=Xi+ ) WixYei (5.3)
i=1

One can understand the effect that this re-use of filtered points has in terms of the im-
pulse response of the filter. Filters that define output points solely on the basis of ?npul
points have a finite impulse response (FIR), because the effect of a single aberrant input
point (an “impulse”) disappears after a finite amount of time, after the last filtered
point that includes the aberrant unfiltered point in its computation. For example, in
equation 5.1, the impact of the value in X; extends only from X;_; to X;.;. In contrast,
filters that define each filtered point at least in part based on filtered points have an
infinite impulse response (IIR), because the effect of a single X; will propagate to all sub-
sequent points: X; will affect Y;, Y, will affect Yy, Yey will affect Y;.»2, and so on.
Nonrecursive and recursive are synonyms for FIR and IIR filters, respectively.

Infinite impulse response digital filters represent something of a hybrid between an-
alog filters and FIR digital filters, sharing characteristics of both. A thorough discussion
of IIR filters is beyond the scope of the present paper (see Ackroyd, 1973; and Cook &
Miller, 1992, for a comparison of analog and digital filters). We will restrict the follow-
ing presentation to FIR filters.

FIR Filters in ERP Research

The ERP literature has described a variety of explicit and implicit FIR filters, particularly
for smoothing (removing high frequency components from) time series. Researchers
often accomplish smoothing time series data by redefining each point in the original
time series as the average of itself and a symmetric number of additional points before
and after it, per equation 5.1. Such a filter is frequently referred to as a moving-average
filter, reflecting the fact that computation of the average around each unfiltered point
X; is repeated to define each filtered point Y. This type of filter is also sometimes
called a boxcar filter, reflecting the shape of the weights (1/n) plotted as a function of
lag relative to the output point. Moving-average filters vary only in the number of data
points averaged together. The gain function this produces is a function of the number
of data points and the temporal or spatial sample rate. Ruchkin and Glaser (1978;
Glaser & Ruchkin, 1976; Ruchkin, 1988) discuss equal-weight filters in detail and pro-
vide an equation for their gain. Nitschke, Miller, and Cook (1998) explore the effect
of sample rate (and thus the temporal or spatial distance between weights) on the gain
function.

Digital Filters in ERP Research 101

A particular advantage of moving-average filters is the rapidity with which each fil-
tered point can be computed. In general for FIR filters with j weights, convolution of
each filtered point requires j multiplications and j — 1 additions. But if the weights are
equal, one can instead do j— 1 additions and then a single division by j.

Although moving-average filters with both equal and unequal weights are frequently
used in data reduction, their gain functions are not generally reported and may not be
generally recognized. Using frequency-domain methods summarized in the next sec-
tion and presented more formally in appendix B of Cook and Miller (1992), one can
compute the gain function for filters having any set of symmetric weights.

In addition to the explicit filtering and smoothing applications described above,
a wide range of other procedures common in the ERP literature and elsewhere can be
understood within an FIR framework. Particularly relevant are FIR filtering methods
used in template-matching algorithms. The “template” can be seen simply as a set of
W; weights with a particular configuration of values, and the weights may not be
symmetric. The basis for selecting weights may differ greatly across applications, but
in general it will reflect a specific notion the investigator has about the signal being
sought. For example, if the template is simply a 10-Hz sine wave, then convolution of
that template with raw EEG will constitute an alpha-band band-pass filter. One might
search EOG or EEG for an eye blink by establishing a filter template whose weights
outline a blink. The Woody (1967) filter technique used for latency correction of ERPs
uses as its template a portion of the pre-correction average waveform for a given sub-
ject. Thus, one can customize the template for each subject and channel. A simpler
variation on the Woody technique employs a sine wave half cycle or a triangular wave
half cycle as the template (e.g., Ford et al., 1994). In all of these examples, one slides
the template along the data, convolves, and notes the latency of maximum cross-
product as the most likely latency of the signal one is filtering. These examples repre-
sent additional ways psychophysiology already uses digital filters.

Design and Evaluation of Digital Filters in the Frequency Domain

All of the FIR filters described above involve convolving a time series with a (usually
symmetric) weight series (itself a time series), yielding a filtered time series. As noted
above, any time series can be represented in the frequency domain rather than the
time domain. A common approach to design and evaluation of digital filters relies on
representing both the original time series X and the weight series W in the frequency
domain. The amplitude spectrum of a filtered time series is equal to the amplitude
spectrum of the original time series, multiplied frequency-by-frequency by the cosine
component of the amplitude spectrum of the weight series (see appendix A of Cook &
Miller, 1992). Moreover, the power spectrum of the resulting time series is equal to the
power spectrum of the original time series, multiplied frequency-by-frequency by the
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squared cosine component of the weight series, These properties are fundamental to
the construction of FIR filters using Fourier transform methods.

Gold and Rader (1969) describe the specific steps for constructing such filters (see also
Ackroyd, 1973; Cook & Miller, 1992; Oppenheim & Schafer, 1975; Ruchkin, 1988), and
software implementing the steps is available for easy creation and evaluation of a cus-
tom set of W weights (e.g., Cook, 1981). The technique involves four steps: (1) Specify
the filter's ideal gain function, (2) Apply the inverse Fourier transform to the gain
function in order to obtain the initial set of weights. This is a simple transforma-
tion from the frequency domain to the time domain; the gain function in the former
becomes the set of weights in the latter. (3) It is typically desirable to reduce the num-
ber of weights and to taper the weights in order to balance requirements related to
transition bandwidth, computational limits, maximum filter width, and “ripple” (the
degree to which the gain function varies around 1.0 in the pass band and around 0.0
in the stop band). (4) Evaluate the reduced filter and repeat the process until obtain-
ing an acceptable filter. Appendix B of Cook and Miller 1992 describes these steps in
detail.

A complementary approach is also based on frequency-domain representation. This
approach requires three steps: (1) Use a direct Fourier transform to transform the origi-
nal time series into the frequency domain. (2) Set those elements of the transform that
correspond to frequencies to be eliminated to zero. (3) Use an inverse Fourier transform
to recreate the original time series, minus those frequencies for which the direct trans-
form was set to zero.

Application Notes

A comparison of several EEG data sets illustrates some of the issues in digital filter de-
sign. In a standard ERP study, one often wants to identify components that are roughly
half-sinusoids and quantify their peak amplitude and the latency of that peak. The fil-
ter should have either a narrow transition band or f; well above the frequencies of the
component(s) of interest. In data digitized at 125 Hz, Giese-Davis, Miller, and Knight
(1993) expected the main ERP components of interest to be below 5 Hz and wished to
remove alpha band information (around 10 Hz) prior to scoring. A low-pass filter with
a half-amplitude cutoff of 5 Hz would require a moderately narrow transition band, in
order to pass low frequencies and still remove alpha. A 31-weight filter proved ade-
quate, with an amplitude gain of 96 percent at 0 Hz, 87 percent at 2 Hz, and 2 percent
at 10 Hz.

In contrast, in order to look at baseline EEG (Etienne et al., 1990), a 31-weight filter
constructed to pass just alpha (8-13 Hz half-amplitude cutoffs) was less effective. The
gain was only 61 percent at 10 Hz, then down to 25 percent at 6 and 16 Hz and to 2
percent at 3 and 18 Hz. The high attenuation at 10 Hz was due to that frequency being
relatively close to both of the cutoff frequencies; very narrow transition bands, requir-
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ing many weights, are necessary in such a case. A 91-weight version would have been
very effective: 99 percent at 10 Hz, 1 percent at 6 and 15 Hz.

A quite different case is the measurement of very slow phenomenon underlying
fast EEG activity. For contingent negative variation (CNV) data in a paradigm with a
relatively long warning interval, Yee and Miller (1988) employed a moving-average
filter to remove conventional EEG, averaging together the last 250 ms of EEG to
score the CNV (sometimes called an “area’” measure, alth ough such measures are more
properly characterized as “average amplitude”; a true area measure would have units
of milliseconds-microvolts). Such a case where signal and noise are presumed to be far
apart in frequency permits a wide transition band, and one can benefit from the sim-
plicity and speed of the moving-average method.

We can make some general comments with respect to the design of digital filters.
A filter with a narrow transition band is usually preferable to one with a wide transition
band. This is because the former will pass more (signal) on the pass band side of the
cutoff frequency and attenuate more (noise) on the stop band side of the cutoff fre-
quency. Thus, a narrower transition band allows the separation of closer frequencies.
In principle, it is possible to construct a digital filter with transition band(s) that
approach zero width. However, for a given type of filter, a narrower transition band
requires more weights. Thus, there is a trade-off between resolution in the frequency
domain (narrowness of the transition band) and resolution in the time domain; more
on this below.

When not otherwise indicated, one should construct digital filters with symmetrical
weights. Because bioelectric signals generally contain multiple frequency components,
a traditional RC analog filter and an FIR digital filter with asymmetric weights will dis-
tort not only the latency but also the shape of the input waveform by introducing a
phase shift and doing so differentially as a function of frequency. No phase shift occurs
if the FIR filter has symmetrical weights.

The frequency domain method described in appendix B of Cook and Miller (1992)
provides a general method for designing complex, unequal-weight filters to meet a
variety of specifications of pass band, transition band, and ripple. The reader can con-
sult the engineering literature for other approaches to digital filter design. Require-
ments of replication might lead an investigator to choose one type of filter over other
similar filters. Practical issues, including computation time when the filter is to be
implemented on-line, may also constrain the choice of filter. Researchers will continue
to develop new methods of digital filtering (e.g., Mallat, 1999).

Digital Filtering in Marketed ERP Analysis Software

Increased interest in psychophysiological research as well as inexpensive computing
power has fostered the development of marketed analysis software, both commercial
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and freeware. These products often include features such as artifact rejection, selective
averaging, and baseline removal. Typically, software also provides limited digital filter-
ing capabilities that are not thoroughly documented. We intend the present discussion
to help users of marketed programs understand the features of the digital filter
provided in their package, so they can optimally use and accurately report this infor-
mation. We also describe a procedure below that allows one to determine the gain
function of a filter.

Marketed programs typically provide a single type of filter. For example, BESA 2000
(BESA Manual, Version 2000) and NeuroScan (Neurosoft Inc., Version 4.1) use a But-
terworth filter, which optimizes the flatness of the pass band at the expense of a rela-
tively broad transition band. Other filters have different characteristics. For example,
the Chebyshev filter has a relatively narrow transition band at the expense of passband
ripple. Other programs provide preset filters but may also provide a means by which
the user can insert filters with any possible gain function. Despite differences in the
type of filter used, terminology, and the user interface, there are three basic features
shared by most filtering software surveyed for this chapter: setting the low- and high-
pass frequencies, selecting a zero-phase-shitt method or a simulated analog method
that provides a phase shift, and adjusting the steepness of the gain function in the
transition band, each of which we discuss below.

Low- and High-Pass Filter Settings

All programs surveyed for this chapter (James Long Company EEG Analysis System
EEGCONV Version 7.589, BESA 2000, EEGLAB Version 4.03, NeuroScan Version 4.1,
Instep Version 4.2, Neuromag Plotter Version 4.6.2, EGI Net Station) allow the user
to specify low- and high-pass filter settings. Programs typically also allow the user to
specify bandpass and bandstop (notch) filters. Where a bandpass filter option is not
available, enabling both the low- and high-pass filter options constitutes a bandpass
filter. Virtually none of the products allows more than one instance of each type of
filter, such as multiple pass bands (desirable to eliminate both EEG alpha and 50- or
60-Hz power-line noise), although several programs allow one to set multiple notch/
bandstop filters. Apparently only one commercial product (James Long Company)
allows users to import custom weights and apply any convolution vector to the data-
set, allowing the user to employ many types of filters.

Importantly, there is variability across programs in whether “cutoff frequency”
means the half-power frequency (in accordance with much of the electrical engineering
literature) or the half-amplitude frequency (common in laboratory practice in the ERP
literature). As noted above, this corresponds to the frequency at which the gain has
decreased by either 3 dB (50 percent power) or 6 dB (50 percent amplitude). In some
cases, it is not made explicit whether amplitude or power values are used. For example,
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in BESA 2000, a plot showing the filter gain function graphs f; as the 50 percent cutoff
frequency but does not state whether the y axis reflects amplitude or power. (Michael
Scherg, personal communication, 04/18/2003, clarified that BESA plots amplitude.)

Across products, there is also variability in the way low- and high-pass filters are set,
The more common method is when one sets separate low- and/or high-pass filter set-
tings via specifying the 50 percent amplitude or power point explicitly. The second
method is often used to set a notch filter or a band-pass filter (each of which has both
high- and low-pass points). In this case, one explicitly specifies the desired midpoint of
the stop band or pass band, and then sets the cutoff frequencies indirectly by explicitly
adjusting the width of the stop or pass band. For example, when creating a filter to pass
only EEG alpha (8-12 Hz), one might set the midpoint at 10 Hz and the width at 4 Hz.
If software (e.g., BESA 2000) interprets the width setting as the half-point frequencies
for the high- and low-pass cutoffs, this would place the high-pass at 8 and the low-pass
cutoff at 12 Hz. The effect of such settings is to remove 50 percent of the signal at both
8 and 12 Hz, retaining more activity at intermediate frequencies. In addition, given
that the filter is not perfect, it passes some amount of theta (4-8 Hz) and beta (13-20
Hz) activity. Increasing the width parameter includes more alpha band activity at
the expense of also including more theta and beta (figure 5.3). In other programs (e.g.,
Neuromag), when defining stop band parameters, one sets a midpoint and the width
defines where the gain returns to unity instead of the 50 percent cutoff point. In gen-
eral, the exact gain function at frequencies below and above f; are unknown, although
as shown below, one can easily compute these values. Note that this example is
ambiguous as to what 50 percent of the signal means. Given that products vary in
whether their use of f; refers to half power, half amplitude, or possibly something
else and that this is not always made clear, the example must be vague in order to be
general.

Aside from the variability in the way one sets cutoff frequencies, there is considerable
variability in terminology, both within and across software. For example, the Neuro-
mag “filter shaping” display provides a convenient set of slider bars for setting the low-
pass, high-pass, and notch filters. For each filter, one adjusts a “‘Center frequency” and
a “Width” slider bar. The setting labeled “Center frequency” can be confusing, in that
for setting the notch filter it refers to the center of the notch (the center of its stop
band), whereas for setting the low-pass or high-pass filter it refers to the center of
the transition band. The manual states (p. 16) that in setting the “Center frequency”
point, the user sets the —3 dB point. However, it is the —6 dB frequency that the
user actually specifies directly, rather than the -3 dB frequency. Neuromag confirmed
that it is the half-amplitude frequency that the software intends and that the manual
should say —6 dB rather than —3 dB in order to be consistent with the table on the
same page (Matti Kajola, personal communication, 6/11/03).
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Figure 5.3
The gain function (amplitude) of a passband filter with a midpoint at 10 Hz and width settings of
4, 5, and 6 Hz. Increasing the width parameter includes more alpha-band activity, at the expense

of also including more theta and beta.

Zero Phase Shift and Simulated Analog Settings

Along with deciding on low- and/or high-pass settings, some software provides a
choice of a zero-phase-shift filter or a simulated-analog filter. (If not specified explicitly,
it is likely, but should not be assumed, that the default is zero phase shift.) A number
of different conventions are used to input the settings for simulated analog filters.
For example, Neuroscan 4.1 provides a button labeled “Analog Simulation,” and the
Neuroscan 4.1 manual (p. 156) notes that an analog simulation filter is a one-pass
(forward) Butterworth filter, which is 3 dB down at the cutoff frequency (we describe
characteristics of the Butterworth Filter below when discussing zero-phase settings).
BESA 2000 provides the same option and additionally allows the user to specify the
analog simulation by selection of time constants of 1, 0.3, or 0.1 s (see box 5.4). These
capabilities allow investigators to replicate the high-pass analog filter built into most
amplifiers. However, aside from this purpose, the use of simulated analog filters is not
recommended, due to the frequency-dependent phase distortion it introduces.
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Applying a filter that induces identical phase distortion when applied in both the
forward and backward directions cancels the distortion and thus allows one to main-
tain the temporal shape of the waveform. This is how some software implements the
zero-phase-shift setting. For example, in BESA 2000 and NeuroScan 4.1, zero-phase-
shift filtering involves a Butterworth filter applied twice, once in the forward direction
and once in the reverse direction.

It is important to note that, with each application of the Butterworth filter (either a
forward or backward pass), the —3 dB and —6 dB frequencies shift, and thus the net
cutoff frequency and transition band slope change. For example, whereas a single pass
of the Butterworth Filter with an 8-Hz high-pass setting places f. (-3 dB) at 8 Hz (slope
6 dB/octave), two passes of the filter result in a two-fold increase in the attenuation at
8 Hz (—6 dB; slope 12 dB/octave). Now 8 Hz is the half-amplitude frequency and is no
longer f;, the half-power frequency. Four passes (two backward and two forward) create
a filter that is —12 dB at 8 Hz (slope = 24 dB/octave). This characteristic of filter set-
tings is frequently not noted, nor is it always clear in available software whether the
filter parameters the user enters directly specify the characteristics of the single-pass
filter or the net effect of a multipass filter. Figure 5.4 illustrates the gain function of
a filter provided by BESA 2000 with 8-12 Hz half-amplitude bandpass. Three different
low-pass slopes (24 dB/octave, 48 dB/octave, 96 dB/octave) are implemented by differ-
ent numbers of passes of a Butterworth filter. Because the half-amplitude frequency
does not change as a function of slope (and thus as a function of the number of
passes), it is apparent that the BESA user interface interprets the user’s specifications
in terms of the net cutoff desired rather than in terms of the (single-pass) Butterworth
filter itself. Investigators should report the net effect of the filter on the gain function.
Reporting characteristics of an individual pass in a multipass filter method is of little
interest and can actually be misleading.

Adjusting the Slope of Filter Roll-Off

The number of times the filter is applied is closely related to the filter's roll-off. Just as
software differs in the way cutoff frequencies are set, there are also differences in the
way roll-off settings are expressed. In general, the differences depend upon whether the
input value reflects the roll-off value due to a single pass of the filter or the net effect of
multiple passes. One can understand these differences by first considering the slope set
in an analog filter and then considering slope settings in a digital filter. In effect, analog
filters are applied once in the forward direction. Because the filter is only applied once,
it is termed a first-order filter. A Butterworth filter applied once has a cutoff frequency
at —3 dB and a slope of 6 dB/octave. Off-line, the same filter can be applied multiple
times, in forward and reverse directions, to create higher order filters that will have
zero phase shift if applied an even number of times. Aside from maintaining phase
information, each application of the filter increases the steepness of the roll-off. For



108 J. C. Edgar, |. L. Stewart, and G. A. Miller

10004

T5% A

50%

25% -

£

g
g
&

o8z @z 0B 12He 20R:

Figure 5.4
Ilustration of the effect of overlap of low-pass and high-pass transition bands as a function of

slope settings for the low-pass filter.

example, a Butterworth filter that is applied once in each direction is a second order
filter with a final slope of 12 dB/octave (6 dB/octave for each pass). Overall, in order to
narrow the width of the transition band one simply needs to run the data through the
filter multiple times.

As noted above, some of the variability across software packages in the way they
define roll-off values is a function of whether the input settings reflect the single pass
roll-off value or the net effect of multiple passes of the filter. Versions of Neuroscan
prior to 4.1 reported roll-off values in terms of that for a single forward or backward
pass, although both forward and backward passes were completed, so that the net
effect was twice what the user specified: a single-pass roll-off value was set (e.g., 12 dB/
octave), with the filtered data actually characterized by a roll-off twice this value (24
dB/octave). Some other programs select the net roll-off value. In BESA 2000, this
depends on whether one enables the zero-phase-shift option. The roll-off value the
user enters characterizes the single-pass filter, but additionally selecting the zero-phase-
shift option doubles the net effect, due to the two passes made with that filter.
The manual spells this out, but it is not apparent in the user dialog box (confirmed
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by Patrick Berg, personal communication, 4/18/03). Users should understand the
method employed.

When allowing the user to set the cutoff frequency explicitly, programs generally
provide a way to adjust the width of the transition between the pass band and the stop
band. However, in programs where a midpoint frequency and width value are selected
(e.g., stop band and pass band settings), and where it is not possible to also simulta-
neously vary the steepness of the roll-off, one is forced to rely on the default roll-off
settings.

When high- and low-pass settings are nearby or the transition band is broad, a com-
bination of high- and low-pass settings determine the gain function in the low- and
high-pass transition bands. For example, as figure 5.4 shows, with cutoff frequencies
at 8 and 12 Hz and with relatively steep roll-offs (96 dB/octave), there is little overlap
between the two transition bands. Although the 8- and 12-Hz cutoffs are quite close to
each other, such a filter passes virtually all of the 10-Hz activity. However, if the low-
pass transition band is widened via a 48-dB/octave slope, the two transition bands be-
8in to overlap, so that both low- and high-pass filters remove a portion of frequencies
in the center of the pass band. A very significant distortion in the high-pass transi-
tion band is observed with a 24 dB/octave low-pass slope. In designing a filter, it is not
necessary to have the same roll-off for high- and low-pass filters. However, roll-off is
particularly important when the high and low cutoffs are close, such that their transi-
tion bands may overlap, cutting into the pass band more than the investigator fore-
sees. The overall gain function a filter procedure produces is influenced by multiple
factors, and when implementing filters in software it is often difficult to determine in
advance the final gain function. The next section details a method to determine gain
values at all frequencies.

Determining Exact Gain Values at Each Frequency

Unfortunately, software often provides exact gain values at only a few frequencies. In
particular, exact gain values may only be stated at f; (50 percent power, 70.7 percent
amplitude) or at 50 percent amplitude. Some products provide an on-screen plot of the
entire gain function, which is very valuable in selecting one’s filters but may be im-
precise for determining and reporting filter behavior at a specific frequency.

Although the full gain function is rarely made available, often one can easily obtain
this empirically, using a variant of the methods described above and in appendixes A
and B of Cook and Miller (1992). In general, what is needed is the ability to calculate
a Fourier transform (converting the data from the time to the frequency domain) on
both the original unfiltered data and the filtered data, and the ability to output the
resulting power or amplitude spectrum of both time series. Marketed analysis programs
often include the ability to calculate a Fourier transform. If not included, widely avail-
able, general-purpose software such as MATLAB or Excel has built-in Fourier transform
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functions, although a small amount of additional computation may be needed to ob-
tain the power or amplitude spectrum from the output of such functions (see Cook &
Miller, 1992, appendix A).

The power or amplitude spectrum will be a new vector, with values for a series of
sine waves. When T is the real-time size of the epoch submitted to the Fourier trans-
form, each value in the spectrum provides the power or amplitude for a frequency that
is a harmonic of the frequency given by 1/T, as box 5.6 explains.

In a time series collected at 250 Hz, an epoch that contains 512 points (2%) spans
T = 2.048 seconds of data. The size of the step between adjacent frequencies in the
power or amplitude spectrum is 1/2.048 = 0.488 Hz. The first bin or entry in the vector
will contain 0/T = 0 Hz (DC) power, the second bin 1/T = 0.488 Hz, the third 2/T =
0.977 Hz, and so on up to 256/T = 125 Hz. Software allows one to set the epoch length
T (sometimes with number of points constrained to a power of 2). Once both the
unfiltered and filtered datasets have been created and the bin size determined, one can
calculate the filtered/unfiltered ratio for each frequency bin to obtain the filter’s gain
function.

As an illustration, figure 5.5 plots the gain function (amplitude) with data digitized
at 250 Hz and epoch lengths of .512 seconds (128 points), 1.024 seconds (256 points),
2.048 seconds (512 points), and 4.096 seconds (1024 points). Each case employed
a band-pass filter with the midpoint set at 10 Hz and a width of 4, setting the half-
amplitude points at 8 and 12 Hz. The graphs show that, as epoch length increases,
frequency resolution also increases. For short epoch lengths one can only very gener-
ally approximate the desired frequency boundaries. For example, to compute a mea-
sure of total alpha activity, with an epoch size of .512 seconds, at the low end of the
alpha band one must choose between 7.81 and 9.77 Hz and at the high end between
11.71 and 13.67 Hz. Exact values of 8 and 12 Hz are not available, because the spec-
trum contains only harmonics of 1/T. That is, the researcher’s choice of T dictates that
the activity in the epoch will be modeled as the sum of just 1/T" and its harmonics—no
other frequency can be represented accurately. As figure 5.5 shows, increasing the
epoch length to 4.096 s decreases the step size to 1/T = 1/4.096 = .244 Hz. Although
increased frequency resolution is desirable, it necessarily comes at the expense of
decreased temporal resolution.

Conclusion

Digital filters are pervasive in the ERP literature and in related disciplines, and reliance
on them will surely increase. Publicly available software collectively provides a wide
array of choices, but these vary across programs, are often not well documented, and
are rarely described adequately in research publications that rely on them.
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Each panel plots the gain function of a bandpass filter, identical except for the real-time length of
the data epoch being filtered. The panels illustrate that the longer the epoch (and thus the poorer
the temporal resolution), the better the frequency resolution.

The present discussion touches on a number of fundamental and practical issues in
understanding and selecting appropriate digital filters. A major strength of digital fil-
tering is its flexibility; however, that flexibility means that the researcher must make
many choices (knowingly or not). With each choice come trade-offs that the researcher
needs to weigh. Marketed software can save the researcher considerable time, but it
often undercharacterizes its algorithms and options. Despite the apparent convenience
of point-and-click interfaces, researchers should not exercise those options without
understanding them, especially the assumptions and limitations they entail. Faithful
replication relies on authors providing adequate description of their filters.
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